Matériaux : de la chimie aux propriétés - Constantes et Équations

Constantes et Valeurs

Vitesse de la lumière c 3×10^8 m/s Accélération gravitationnelle g 9.8 m/s²

Constante de Planck h $6,626 \times 10^{-34}$ J.s (et $\hbar = \frac{h}{2\pi}$)

Constante de Boltzmann k ou k_B 1,38 × 10⁻²³ J/K

Nombre d'Avogadro N_a 6.022×10^{23} particules mol⁻¹

Charge élémentaire e 1,6x 10⁻¹⁹ C (et 1eV vaut cela en J)

Constante des gaz parfaits $R = N_a k = 8,314 \text{ J K}^{-1} \text{ mol}^{-1}$

0,08205 L atm mol⁻¹ K⁻¹ 8,3145 kPa L mol⁻¹ K⁻¹

8.314 x 10⁻² L bar K⁻¹mol⁻¹

Volume molaire d'un $V_{mol} = R \times 273,15/P_0 = 22,4 \text{ L mol}^{-1}$

gaz parfait, $p_o = 1$ atm, T = 0°C

 $1,66 \times 10^{-27} \,\mathrm{kg}$ $u = 10^{-3}/N_a =$ Unité de masse atomique Constante de Faraday $F = N_a \cdot e =$ 96 485 C mol⁻¹ $R_{\infty} = m_e \mu_o^2 e^4 c^3 / (8h^3) = 1,097 \times 10^7 \text{ m}^{-1}$ Constante de Rydberg Constant énergétique de Rydberg $R_H = h c R_{\infty}$ 13,6 eV $m_p = 1,672 \times 10^{-27} \text{ kg} =$ Masse du proton Masse du neutron $m_n = 1,674 \times 10^{-27} \text{ kg} =$ $9.1 \times 10^{-31} \text{ kg} = 5.485 \times 10^{-4} \text{ u}$ Masse de l'électron $m_e =$

Structure atomique (constantes données ci-dessus)

Energie d'un photon de longueur d'onde $\lambda : E = h \frac{c}{\lambda} = hv$ [J]

Energie des niveaux n de l'atome d'hydrogène: $E_n = \frac{-13.6 \text{ eV}}{n^2}$ (n = 1, 2, 3, ...)

Rydberg pour l'Hydrogène $\frac{1}{\lambda} = R_{\infty} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$ λ : longueur d'onde [m]

Equation de Broglie, corps de masse m, vitesse v: $\lambda = \frac{h}{mv}$

Incertitude de Heisenberg $\Delta p \cdot \Delta x \ge \frac{1}{2}\hbar = h/4\pi$ incertitude sur le mvt $\Delta p = m\Delta v$ et sur la position Δx

Loi de gaz parfait : pV = nRT

Potentiel de Lennard Jones, Energie : $E = \varepsilon_0 \left[\left(\frac{r_0}{r} \right)^{12} - 2 \left(\frac{r_0}{r} \right)^6 \right]$ avec ε_0 : énergie de liaison[eV]

 r_0 : distance à l'équilibre [m]

Thermodynamique

Enthalpie H = U + pV [J.mol⁻¹] (U : énergie interne, p: pression en Pa, V : volume en m³/mol)

Entropie : classique : $\Delta S = \frac{Q_{rev}}{T}$ [J.mol⁻¹. K⁻¹]

Variation de l'entropie de l'Univers : $\Delta S_{univers} = \Delta S_{rsys} + \Delta S_{env} = \Delta S_r^0 + \frac{-\Delta H_r^0}{T}$

La capacité calorifique spécifique, à p=const. : $c_p = \frac{1}{m} \frac{dH}{dT} [J.kg^{-1}.K^{-1}]$

Variation de l'enthalpie libre (énergie de Gibbs) : $\Delta G = \Delta H - T\Delta S = -T\Delta S_{univers}$

Variation standard de

- l'entropie de réaction
$$\Delta_r S^o = \sum_{i=1}^p v_i S_i^o(\text{produits}) - \sum_{i=1}^r v_i S_j^o(\text{réactifs})$$

- l'enthalpie de réaction
$$\Delta_r H^o = \sum\limits_{i=1}^p \nu_i \Delta_f H^o_i (\text{produits}) - \sum\limits_{j=1}^r \nu_j \Delta_f H^o_j (\text{réactifs})$$

- l'enthalpie libre de réaction
$$\Delta_r G^o \ = \ \underset{i=l}{\overset{p}{\sum}} \nu_i \Delta_f G^o_i (\text{produits}) \ - \ \underset{j=l}{\overset{r}{\sum}} \nu_j \Delta_f G^o_j (\text{réactifs})$$

 $\Delta G_r^0, \Delta H_r^0 \text{ et } S^0 \text{ mesur\'ees dans des conditions standards et tabul\'ees}$ avec v_i, v_j les coefficients stœchiométriques pour les produits et réactifs respectivement Variation d'enthalpie libre dans une réaction chimique : $\Delta G_r^0 = \Delta H_r^0$ - $T\Delta S_r^0$ Relation entre ΔG_r^0 et ΔG_r : $\Delta G_r = \Delta G_r^0 + RT \ln Q$ avec Q quotient réactionnel Relation entre ΔG_r^0 et K (constante d'équilibre) : $\Delta G_r^0 = -RT \ln K$

Equilibre chimique

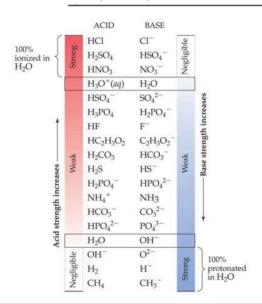
aA + bB
$$\rightleftharpoons$$
 cC + dD, la constante d'équilibre: concentrations à l'équilibre $K = \frac{[C]^c[D]^d}{[A]^a[B]^b}$

Quotient réactionnel $Q = \frac{[C]^c[D]^d}{[A]^a[B]^b}$ (concentrations en fonction du temps)

Les acides et bases

Each active is bases
$$HA + H_2O \rightleftharpoons H_3O^+ + A^- \quad B + H_2O \rightleftharpoons BH^+ + OH^-$$
Constante de dissociation de l'eau : $K_c = [H_3O^+] [OH^-] M^{-2} = 1,0 \times 10^{-14} (à 25^{\circ}C)$
Expression de l'échelle de pH et pOH : $pH = -log[H_3O^+] pOH = -log[OH^-]$
Relation entre pH et pOH : $pH + pOH = 14,00 (à 25^{\circ}C)$
Constante d'acidité $K_a = \frac{[H_3O^+][A^-]}{[HA]}$ Constante de basicité $K_b = \frac{[BH^+][OH^-]}{[B]}$
Relation : $K_aK_b = K_c$
 pH d'une solution d'acide fort ($K_a >> 1$) : $pH = -log([H^+]/1M) = -log(c_a/1M)$
 $c_a = [HA]^0 = [H^+]$
 pH d'une solution aqueuse diluée d'un acide fort : $[H^+] = \frac{c_a + \sqrt{c_a^2 + 4K_e}}{2}$ quand $c_a < 10^{-6}$
 pH d'une solution d'un acide faible ($K_a << 1$) : général : $[H^+] = x = \frac{-K_a + \sqrt{K_a^2 + 4K_a}c_a}{2}$
 $Si[HA]_0 > 100 K_a$: $x = [H^+] = \sqrt{K_a c_a} pH = \frac{1}{2} (pK_a - log[HA]_0)$
 pOH d'une solution d'une base forte ($K_b >> 1$) : $pOH = -log(c_b)$ $c_b = [B]_0$
 pOH d'une solution aqueuse diluée d'une base forte : $[OH^-] = \frac{c_b + \sqrt{c_b^2 + 4K_e}}{2}$ quand $c_b < 10^{-6}$
 pH d'une solution d'une base faible ($K_b << 1$): $x = [OH^-] = \frac{général}{2}$ $x = \frac{-K_b + \sqrt{K_b^2 + 4K_b}c_b}{2}$
 $x = [OH^-] = \sqrt{K_b c_b} pH = \frac{1}{2} (14 + pK_a + log[B]_0)$

	Acide	Base conjuguée	
	HI	Г	
	(acide iodhydrique)	(ion iodure)	
	HBr	Br ⁻	
	(acide bromhydrique)	(ion bromure)	
	HCl	ČI ⁻	
	(acide chlorhydrique)	(ion chlorure)	
	H_2SO_4	HSO₄−	
	(acide sulfurique)	(ion hydrogénosulfate)	
	HNO ₃	NO ₃	_
e e	(acide nitrique)	(ion nitrate)	
Force croissante des acides	\dot{H}_3O^+	H ₂ O	
86	(ion hydronium)	(eau)	
ğ	HSO ₄	ŠO ₄ ²⁻	
95	(ion hydrogénosulfate)	(ion sulfate)	
Sal	HNO ₂	NO ₂	
018	(acide nitreux)	(ion nitrite)	
5	ĤF	ř-	
ဥ	(acide fluorhydrique)	(ion fluorure)	
ē	CH₃COOH	CH ₃ COO	_
	(acide acétique)	(ion acétate)	
	H_2CO_3	HCO ₃	
	(acide carbonique)	(ion hydrogénocarbonate)	
	NH_4^+	NH_3	
	(ion ammonium)	(ammoniac)	
	HCO ₃	CO ₃ ²⁻	
	(ion hydrogénocarbonate)	(ion carbonate)	
	H_2O	OH	
	(eau)	(ion hydroxyde)	
	CH ₃ OH	CH ₃ O	
	(méthanol)	(ion méthanolate)	



L'électrochimie

L'électrochimie

Equation pour le potentiel de pile : $\Delta E^0_{pile} = E^0$ (cathode) - E^0 (anode) [V]

Relation ΔG_r^0 entre ΔE^0_{pile} et : $\Delta G_r^0 = -z \ F\Delta E^0_{pile}$ [J.mol⁻¹] (car [J]=[C.V])

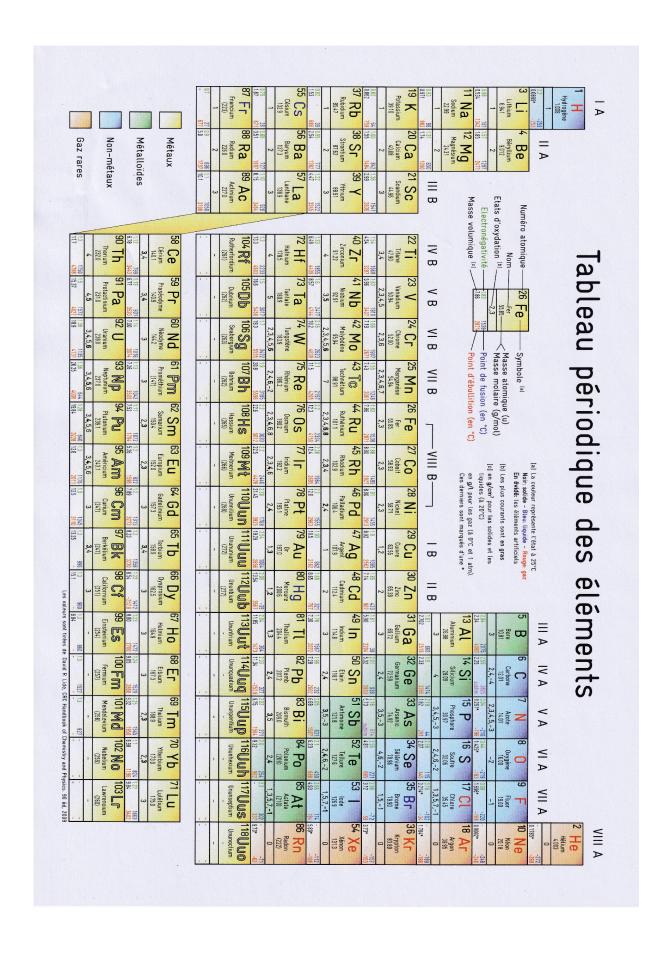
Potentiel standard et constante équilibre : $\ln K = \frac{z \ F\Delta E^0}{RT}$ L'équation de Nernst : $\Delta E = \Delta E^0 - \frac{RT}{zF} \ln Q$

Loi de Faraday : $n = \frac{It}{zF}$ avec n = nombre de moles du produit formé ; I = intensité de courant [A];

F : constante de Faraday ; z = nombre d'électrons transférés

Potentiel standard (page suivante) E⁰, donné pour 1 concentration de 1mol/l,1 atm

mi-réaction de r	éduction		<i>E</i> ° (V)	
Agent oxydant	$F_2(g) + 2 e^-$	\longrightarrow 2 F ⁻ (aq)	2,87	Agent réducteu
plus fort	$H_2O_2(aq) + 2 H^+(aq) + 2 e^-$	\longrightarrow 2 H ₂ O(/)	1,78	plus faible
	$PbO_2(s) + 4 H^+(aq) + SO_4^{2-}(aq) + 2 e^-$	$\longrightarrow PbSO_4(s) + 2 H_2O(I)$	1,69	
	$MnO_4^-(aq) + 4 H^+(aq) + 3 e^-$	$\longrightarrow MnO_2(s) + 2 H_2O(l)$	1,68	
	$MnO_4^-(aq) + 8 H^+(aq) + 5 e^-$	\longrightarrow Mn ²⁺ (aq) + 4 H ₂ O(I)	1,51	
	$Au^{3+}(aq) + 3e^{-}$	$\longrightarrow Au(s)$	1,50	
	$PbO_2(s) + 4 H^+(aq) + 2 e^-$	$\longrightarrow Pb^{2+}(aq) + 2 H_2O(I)$	1,46	
	$Cl_2(g) + 2 e^-$	\longrightarrow 2 Cl ⁻ (aq)	1,36	
	$\text{Cr}_2 \text{O}_7^{2-}(aq) + 14 \text{H}^+(aq) + 6 \text{e}^-$	\longrightarrow 2 Cr ³⁺ (aq) + 7 H ₂ O(/)	1,33	
	$O_2(g) + 4 H^+(aq) + 4 e^-$	\longrightarrow 2 H ₂ O(I)	1,23	
	$MnO_2(s) + 4 H^+(aq) + 2 e^-$	$\longrightarrow Mn^{2+}(aq) + 2 H_2O(I)$	1,21	
	$10_3^-(aq) + 6 \text{ H}^+(aq) + 5 \text{ e}^-$	$\longrightarrow \frac{1}{2} I_2(aq) + 3 H_2O(I)$	1,20	
	$Br_2(I) + 2e^-$	\longrightarrow 2 Br ⁻ (aq)	1,09	
	$V0_2^+(aq) + 2 H^+(aq) + e^-$	\longrightarrow V0 ²⁺ (aq) + H ₂ O(I)	1,00	
	$N0_3^-(aq) + 4 H^+(aq) + 3 e^-$	$\longrightarrow NO(g) + 2 H_2O(I)$	0,96	
	$CIO_2(g) + e^-$	$\longrightarrow CIO_2^-(aq)$	0,95	
	$Ag^{+}(aq) + e^{-}$	$\longrightarrow Ag(s)$	0,80	
	$Fe^{3+}(aq) + e^{-}$	$\longrightarrow Fe^{2+}(aq)$	0,77	
	$O_2(g) + 2 H^+(aq) + 2 e^-$	$\longrightarrow H_2O_2(aq)$	0,70	
	$MnO_4^-(aq) + e^-$	$\longrightarrow MnO_4^{2-}(aq)$	0,56	
	$I_2(s) + 2e^-$	\longrightarrow 2 l ⁻ (aq)	0,54	
	$Cu^+(aq) + e^-$	$\longrightarrow Cu(s)$	0,52	
	$O_2(g) + 2 H_2O(I) + 4 e^-$	\longrightarrow 4 OH ⁻ (aq)	0,40	
	$Cu^{2+}(aq) + 2e^{-}$	$\longrightarrow Cu(s)$	0,34	1,
	$SO_4^{2-}(aq) + 4 H^+(aq) + 2 e^-$	$\longrightarrow H_2SO_3(aq) + H_2O(I)$	0,20	
	$Cu^{2+}(aq) + e^-$	$\longrightarrow Cu^+(aq)$	0,16	
	$\mathrm{Sn}^{4+}(aq) + 2 e^{-}$	$\longrightarrow \operatorname{Sn}^{2+}(aq)$	0,15	
	2 H ⁺ (aq) + 2 e ⁻	$\longrightarrow H_2(g)$	0	
	$Fe^{3+}(aq) + 3e^{-}$	$\longrightarrow Fe(s)$	-0,036	
	$Pb^{2+}(aq) + 2e^{-}$	$\longrightarrow Pb(s)$	-0,13	
	$\operatorname{Sn}^{2+}(aq) + 2e^{-}$	$\longrightarrow \operatorname{Sn}(s)$	-0,14	
	$Ni^{2+}(aq) + 2e^{-}$	$\longrightarrow Ni(s)$	-0,23	
	$Cd^{2+}(aq) + 2e^{-}$	$\longrightarrow Cd(s)$	-0,40	
	$Fe^{2+}(aq) + 2e^{-}$	$\longrightarrow Fe(s)$	-0,45	
	$\operatorname{Cr}^{3+}(aq) + \mathrm{e}^{-}$	$\longrightarrow \operatorname{Cr}^{2+}(aq)$	-0,50	
	$Cr^{3+}(aq) + 3e^{-}$	$\longrightarrow \operatorname{Cr}(s)$	-0,73	
	$Zn^{2+}(aq) + 2e^{-}$	$\longrightarrow Zn(s)$	-0,76	
	2 H ₂ O(/) + 2 e ⁻	$\longrightarrow H_2(g) + 2 OH^-(aq)$	-0,83	
	$Mn^{2+}(aq) + 2e^{-}$	$\longrightarrow Mn(s)$	-1,18	
	$Al^{3+}(aq) + 3e^{-}$	$\longrightarrow Al(s)$	-1,66	
	$Mg^{2+}(aq) + 2e^{-}$	$\longrightarrow Mg(s)$	-2,37	
	$Na^+(aq) + e^-$	$\longrightarrow Na(s)$	-2,71	
	$Ca^{2+}(aq) + 2e^{-}$	$\longrightarrow Ca(s)$	-2,76	
	$Ba^{2+}(aq) + 2e^{-}$	$\longrightarrow Ba(s)$	-2,90	
	$K^+(aq) + e^-$	$\longrightarrow K(s)$	-2,92	Agent réducte
Agent oxydant plus faible	$Li^+(aq) + e^-$	$\longrightarrow \text{Li}(s)$	-3,04	plus fort



Matériaux – Principales relations et équations

GENERALITES – LIAISONS (voir formulaire chimie)

un set (n, l, m_l, m_s) correspond à 1 seul e Principe de Pauli :

Règle de Hund: sur les orbitales (n, l), on fixe d'abord m_s avant de varier m_l

DIFFRACTION (θ est l'angle, λ la longueur d'onde du faisceau lumineux, et n un entier).

Loi de Bragg : $2d_{hkl} \sin\theta = n\lambda$ [m]avec, pour un réseau cubique, la distance entre les plans (h,k,l) : $d_{hkl} = a(h^2 + k^2 + l^2)^{-1/2}$

ELASTICITE – **VISCOSITE** (F_x force selon la direction x, S_x section normale à la direction x, S_y section normale à la direction y)

Contrainte de cisaillement [Pa] : $\sigma_{xy} = \frac{F_x}{S_{xy}}$

ELASTICITE – VISCOSITE (F_x force seron is since the contraint of the c

Coefficient de Poisson [-] : $v = \frac{-\varepsilon_{yy}}{\varepsilon_{xx}} = \frac{-\varepsilon_{zz}}{\varepsilon_{xx}}$

Module de cisaillement G [Pa] : $\sigma_{xy} = G \ 2\varepsilon_{xy} = G \frac{\Delta L_x}{L_{0y}}$

Pour un solide isotrope : $G = \frac{1}{2} \frac{E}{1+v}$

Coefficient de compressibilité K[Pa] : K = $-V_0 \frac{\Delta p}{\Delta V}$

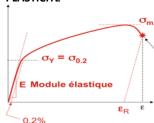
Pour un solide isotrope : $K = \frac{1}{3} \frac{E}{1-2\nu}$

Viscosité μ d'un liquide [Pa.s] : $\sigma_{\chi y} = \mu \frac{dv_\chi}{dy} = \mu \dot{\varepsilon}_{\chi y}$

Vitesse de propagation d'une onde [m/s] : $v=\sqrt{E/\rho}$

Densité d'énergie **élastique** en traction uniaxiale [J/m³=Pa] : $w=\frac{1}{2}\,\mathrm{E}\varepsilon_{xx}^2=\frac{1}{2}\frac{\sigma_{xx}^2}{\mathrm{E}}$ (Energie totale, multiplier par le volume V) Pour un potentiel de Lennard-Jones : $E=\frac{72\varepsilon_0}{r_0^3}$ Changement de volume : $\frac{\Delta V}{V}=(1-2\nu)\varepsilon_{xx}$

PLASTICITE



 $\sigma_{\rm m}$ Limite d'élasticité d'un matériau : $\sigma_{\rm el}$ ou $\sigma_{\rm Y}$ [Pa] (Métaux : $\sigma_{0.2}$ Polymères : $\sigma_{0.5}$)

Résistance maximum d'un matériau : σ_m [Pa]

Ductilité d'un matériau : ER (- ou %)

Déformation totale : $\varepsilon_{xx} = \varepsilon_{xx}^{el} + \varepsilon_{xx}^{pl}$

Augmentation de limite d'élasticité due au durcissement: par solution solide $\Delta \sigma_Y^{SS} = K_{SS} G \delta \sqrt{X}$, par précipités $\Delta \sigma_Y^P = K_P \frac{Gb}{I}$

par écrouissage $\Delta \sigma_Y^E = K_E G b \sqrt{\rho_d}$, par taille des grains (Hall Petch) $\Delta \sigma_Y^{HP} = \frac{K_{HP}}{\sqrt{\phi_o}}$ où K constantes, G module de cisaillement

[Pa], δ: différence de rayons atomiques [m], X: composition [-], b: norme du vecteur de Burgers [m], L: distance entre obstacles

[m], ρ_d : densité de dislocations [m⁻²], ϕ_g : diamètre des grains [m].

Dureté Vickers H_V [Vickers] = $1.854 \frac{F[kgF]}{d^2[mm^2]} = 0.189 \frac{F[N]}{d^2[mm^2]}$ où d est la moyenne des diagonales de l'empreinte.

Pour l'acier, $H_V \cong \sigma_Y [Mpa]/3$ et la dureté en Mpa : $H[Mpa] = 9.81 \; H_V \cong 3 \; \sigma_Y$

Dureté Brinell, $H_{\scriptscriptstyle B} = 0.102 \frac{2 F \big[N \big]}{\pi D (D - \sqrt{D^2 - d^2}) \big\lceil m m^2 \big\rceil}$ où D est le diamètre de la bille et d diamètre moyen de l'empreinte.

Facteur de concentration de contraintes $K_{sc}=1+\alpha(1/\rho_{sc})^{0.5}$ [-], α cst, ρ_{sc} rayon de courbure;

Facteur d'intensité de contraintes : $K_1 = \sigma_0 \sqrt{\pi l}$ [Pa m^{1/2}], σ_0 est la contrainte appliquée, l la longueur de fissure.

Extension de la zone plastique en avant d'une fissure : $r_y = \frac{(K_1)^2}{\pi \sigma_v^2}$ [m]

Tenacité d'un matériau : $K_{1C} = \sqrt{G_C E}$ avec $G_C = 2\gamma + G_C^{pl}$ (γ : énergie de surface ; G_C^{pl} : énergie plastique [Pa.m ou J/m²])

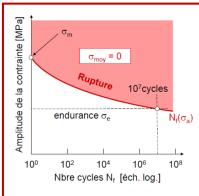
Critère de fissuration spontanée : K₁≥K_{1C} Pour un potentiel de Lennard-Jones, énergie de surface $\gamma = \frac{1}{2} \frac{\varepsilon_0}{r^2}$

FATIGUE - USURE

Coefficients de frottements statiques [-] : $\mu_s \approx \frac{F_t}{F_n}$ (v=0) dynamiques : $\mu_d \approx \frac{F_t}{F_n}$ (v ≠ 0) Taux d'usure spécifique Ω [-] : $\Omega = \frac{W}{A}$ où A est l'aire de frottement et W = $\frac{\text{volume enlev\'e}}{\text{distance parcourue}}$

Coefficient d'Archard ka [Pa-1] : $\Omega = \frac{W}{A} = k_a \; p = k_a \; \frac{F_n}{A}$

Matériaux – Principales relations et équations



A gauche, courbe de fatigue à σ_{moy} =0 donnant le nombre de cycles à rupture pour une amplitude de contrainte σ_a . σ_m est la contrainte a rupture statique, N_f le nombre de cycle à rupture. L'endurance du matériau σ_e est donnée pour une rupture à 10^7 cycles. Lorsque σ_{moy}≠0, on utilise la loi de Goodman, qui donne la nouvelle amplitude qui donne un nombre de cycle à rupture N_f: $: \sigma_a(N_f, \sigma_{moy}) = \sigma_a^0(N_f) \left(1 - \frac{\sigma_{moy}}{\sigma_m}\right)$ $\sigma_a^0(N_f)$ est l'amplitude pour σ_{moy} =0 donnant N_f cycles à rupture. Lorsque des cycles d'amplitudes variables sont appliquées, on utilise la règle de Miner : $\sum \frac{N_i}{N_{fi}(\sigma_{a,i})}$ =1, avec Ni

nombre de cycles de la période i, a l'amplitude $\sigma_{a,i}$.

Loi de Paris : $\frac{dl}{dN} = A\Delta K_1^m$, A, m constantes, I [m] longueur de fissure et N nombre de cycles, K₁ facteur d'intensité de contraintes.

PROPRIETES THERMIQUES

 $\mbox{Chaleur sp\'{e}cifique}: \mbox{c_p} = \frac{1}{m} \frac{dH}{dT} \left[\mbox{J K$}^{-1} \mbox{ kg$}^{-1} \right] \qquad \qquad \mbox{Chaleur latente de transformation}: \mbox{L} = \frac{\Delta H}{m} \left[\mbox{J kg$}^{-1} \right]$

Flux thermique : j_T= -k $\frac{dT}{dz}$ [W m $^{-2}$] où k est la conductivité thermique [W m $^{-1}$ K $^{-1}$]

Eq. de la chaleur : $\frac{\partial(\rho h)}{\partial t} = \rho c_p \frac{\partial T}{\partial t} = -\frac{\partial j_T}{\partial z} = k \frac{\partial^2 T}{\partial z^2}$ où $\frac{\partial T}{\partial t} = a \frac{\partial^2 T}{\partial z^2}$ et diffusivité $a = \frac{k}{\rho c_p} [\text{m}^2 \, \text{s}^{-1}]$

Nbre Fourier [-] : $F_0 = \frac{a\Delta t}{\Delta \chi^2}$ Position où T=(T₁+T*)/2 est Lc₁=V(a₁t) ; Effusivité: e= $\sqrt{k\rho c_p}$

Coeff. d'expansion thermique linéaire [K-1]: $\alpha = \frac{1}{L} \frac{dL}{dT}$ Déformation thermique [-] $\varepsilon_{xx}^{th} = \frac{\Delta L}{L_0} = \alpha (T_1 - T_0)$

COMPORTEMENT A HAUTE TEMPERATURE

Coefficient de diffusion des espèces chimiques : $D(T)=D_0 \exp\left[\frac{-Q}{RT}\right]$ [m²s¹], D_0 , Q constantes, R constante des gaz parfaits

Loi de la diffusion (C concentration en mol ou g/volume): $\frac{\partial c}{\partial t} = -\frac{\partial j_c}{\partial x} = D\frac{\partial^2 c}{\partial x^2}$ Nombre de Fourier[-] : $F_0 = \frac{D\Delta t}{\Delta x^2}$

DIAGRAMME DE PHASES

Composition ou fraction molaire [-]: $X_A = \frac{N_A}{N_A + N_B}$ Composition ou fraction massique [-]: $C_A = \frac{m_A}{m_A + m_B}$

Règle des phases de Gibbs : N_{DL}=2+N_C-N_P, où : N_{DL} : nbre de degrés de liberté ; N_C : nbre de composants chimiques

N_P : nbre de phases présentes dans le système. Si P fixé, la règle devient: N_{DL}=1+N_C-N_P

Loi des leviers donnant la fraction molaire d'une phase α dans le domaine biphasé ($\alpha+\beta$) [-]: $\chi_{\alpha}=\frac{x_{B_{\beta}}-x_{B\alpha}}{x_{B_{\alpha}}-x_{B\alpha}}$

où X_{B0} : composition nominale en B ; $X_{B_{\alpha}}$: composition de la phase α en B ; $X_{B_{\beta}}$: composition de la phase β en B

OXYDATION/CORROSION

Cinétique d'oxydation, couche dense : $x^2 \sim D_0 \exp\left(\frac{-Q_D}{PT}\right) C_0 t = DC_0 t$, D coeff de diffusion, C_0 concentration en O_2 à la surface Corrosion aqueuse possible si le potentiel E⁰ est inférieur à celui de O₂+2H₂O+4 e⁻->4 OH

PROPRIETES ELECTRIQUES – MAGNETIQUES

Dipôle électrique [A s m] : $\mathbf{p} = \mathbf{q} \mathbf{d}$ Moment magnétique orbital [A m²] : $\mathbf{m} = \frac{1}{2} \mathbf{q} \mathbf{r} \mathbf{x} \mathbf{v}$ Vecteur polarisation : $\mathbf{P} = \frac{1}{v} \sum_{i} \mathbf{p}_{i}$ [A s m²] Vecteur aimantation : $\mathbf{M} = \frac{1}{v} \sum_{i} \mathbf{m}_{i}$ [A m²]

 $\mathbf{P} = \varepsilon_0 \chi_E \mathbf{E} \quad \text{(E:champ \'electrique [V m^{-1}])} \qquad \qquad \varepsilon_0 = 8.85 \times 10^{-12} \, [\text{A s V}^{-1} \, \text{m}^{-1}] \quad \text{et } \varepsilon_r = (1 + \chi_E), \ \chi_E \ susceptibilit\'e \ \acute{e}lectrique[-]$

Charge d'un condensateur [Coulomb=Fahrad.V]: Q = C V avec pour un condensateur plan : C= $\varepsilon_0 \varepsilon_r \frac{S}{d}$, S surface et d distance plaques.

 $\begin{aligned} \textbf{M} &= \chi_M \ \textbf{H} \ \ (\textbf{H}: \text{champ magn\'etique} \ [\text{A} \ \text{m}^{\text{-}1}] \) \\ &\mu_0 = 4\pi \times 10^{\text{-}7} \ [\text{V s A}^{\text{-}1} \ \text{m}^{\text{-}1}] \end{aligned} \\ &\text{et } \mu_r = (1 + \chi_M) \ \chi_M \ susceptibilit\'e \ magn\'etique} \ [-] \\ &\text{Induction magn\'etique} \ d'\text{un sol\'eno\"ide de N spires, de longueur L et courant I : } \\ \textbf{B} &= \mu_0 (\textbf{H} + \textbf{M}) = \mu_0 \mu_r \frac{\text{N I}}{\text{L}} \ [\text{V s m}^{\text{-}2}] \end{aligned}$

Modèle de Drude pour la conductivité électrique : \mathbf{j}_e = $-\mathbf{n}_e$ e \mathbf{v} = $\frac{n_e e^2 \tau}{m_e}$ E= σ_e E= ρ_e^{-1} E, n_e : densité d'électrons

Résistance : $R=\rho_e$ I/S, ρ_e résistivité [Ω m], I longueur du fil, S section. σ_e est la conductivité électrique, [Ω^{-1} m $^{-1}$]

UNITES: $1J=1kg.m^2.s^{-2}=1N.m$, $1 Pa=1 N.m^{-2}$, $1 W=1J.s^{-1}$, $1 A=1C.s^{-1}$, $1 V=1J.C^{-1}=1 kg·m^2·s^{-3}·A^{-1}$